The Shields-Harary numbers of Km, n for continuous concave cost functions vanishing at 1
نویسندگان
چکیده
It is shown that the Shields–Harary index of vulnerability of the complete bipartite graph Km,n, with respect to the cost function f (x)= 1− x, 0 x 1, is m, if n m+ 2√m, and 1 n+1 (n+m) 2 4 , ifm n<m+ 2 √ m. It follows that the Shields–Harary number ofKm,n with respect to any concave continuous cost function f on [0, 1] satisfying f (1)=0 ismf (0), if n m+2√m, and between 1 n+1 (n+m) 2 4 f (0) and mf (0), if m n<m+ 2 √ m. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Shields-harary Numbers of Graphs with Respect to Continuous Concave Cost Functions
The Shields-Harary numbers are a class of graph parameters thatmeasure a certain kind of robustness of a graph, thought of as a network of fortified reservoirs, with reference to a given cost function. We prove a result about the Shields-Harary numbers with respect to concave continuous cost functions which will simplify the calculation of these numbers for certain classes of graphs, including ...
متن کاملINCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY
We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...
متن کاملContinuity of super- and sub-additive transformations of continuous functions
We prove a continuity inheritance property for super- and sub-additive transformations of non-negative continuous multivariate functions defined on the domain of all non-negative points and vanishing at the origin. As a corollary of this result we obtain that super- and sub-additive transformations of continuous aggregation functions are again continuous aggregation functions.
متن کاملSome new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کاملOn convergence of certain nonlinear Durrmeyer operators at Lebesgue points
The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 156 شماره
صفحات -
تاریخ انتشار 2008